If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+8x-24=0
a = 24; b = 8; c = -24;
Δ = b2-4ac
Δ = 82-4·24·(-24)
Δ = 2368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2368}=\sqrt{64*37}=\sqrt{64}*\sqrt{37}=8\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{37}}{2*24}=\frac{-8-8\sqrt{37}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{37}}{2*24}=\frac{-8+8\sqrt{37}}{48} $
| 2f-7=9 | | 15n=420 | | -15+2z=-1 | | 10=j/4+9 | | -6(9x*5)+4x=-408+x | | 360/x=12 | | 0.3z=0.09 | | 77=(6x+1) | | 2(4k+3)=30 | | 3/4x*x=432 | | 8(x+4=-48 | | 77*(6x+1)=180 | | 36=-4+5g | | 24=-3f+3 | | 9+n=−2 | | |3x-1|=4x-3 | | 0.5y-y=-10 | | 50-(x*3)=2 | | x+2(3x-4)=13 | | 1.4x=15.4 | | 33²+7x²=65² | | 6x=+2+40+90 | | y-9=14;y=22` | | 22.36+4.72c=64.93 | | 88=x/2.2 | | (20+2x)(30+2x)=V(x) | | `p-24=13 | | r/0.2=7 | | 16-9x=-20 | | j=-j(0.707-0.707j) | | 0.5*(x-3)=18 | | 34=4a-6-12a |